skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "De_Leo, K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Despite the f0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ ) meson, a tetraquark ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ q q ¯ ) exotic state, a kaon-antikaon ($${{\rm{K}}}\overline{{{\rm{K}}}}$$ K K ¯ ) molecule, or a quark-antiquark-gluon ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ q q ¯ g ) hybrid. This paper reports strong evidence that the f0(980) state is an ordinary$${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ meson, inferred from the scaling of elliptic anisotropies (v2) with the number of constituent quarks (nq), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0(980) state is reconstructed via its dominant decay channel f0(980) →π+π, in proton-lead collisions recorded by the CMS experiment at the LHC, and itsv2is measured as a function of transverse momentum (pT). It is found that thenq= 2 ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ state) hypothesis is favored overnq= 4 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ q q ¯ or$${{\rm{K}}}\overline{{{\rm{K}}}}$$ K K ¯ states) by 7.7, 6.3, or 3.1 standard deviations in thepT< 10, 8, or 6 GeV/cranges, respectively, and overnq= 3 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ q q ¯ g hybrid state) by 3.5 standard deviations in thepT< 8 GeV/crange. This result represents the first determination of the quark content of the f0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Free, publicly-accessible full text available September 1, 2026
  3. A search for flavor-changing neutral current interactions of the top quark ( t ) and the Higgs boson ( H ) is presented. The search is based on proton-proton collision data collected in 2016–2018 at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, and corresponding to an integrated luminosity of 138 fb 1 . Events containing a pair of leptons with the same-sign electric charge and at least one jet are considered. The results are used to constrain the branching fraction ( B ) of the top quark decaying to a Higgs boson and an up ( u ) or charm ( c ) quark. No significant excess above the estimated background was found. The observed (expected) upper limits at a 95% confidence level are found to be 0.072% (0.059%) for B ( t H u ) and 0.043% (0.062%) for B ( t H c ) . These results are combined with two other searches performed by the CMS Collaboration for flavor-changing neutral current interactions of top quarks and Higgs bosons in final states where the Higgs boson decays to either a pair of photons or a pair of bottom quarks. The resulting observed (expected) upper limits at the 95% confidence level are 0.019% (0.027%) for B ( t H u ) and 0.037% (0.035%) for B ( t H c )
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  4. A<sc>bstract</sc> Measurements of light-by-light scattering (LbL,γγ → γγ) and the Breit-Wheeler process (BW,γγ →e+e) are reported in ultraperipheral PbPb collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV. The data sample, corresponding to an integrated luminosity of 1.7 nb−1, was collected by the CMS experiment at the CERN LHC in 2018. Events with an exclusively producedγγore+epair with invariant massesmγγ,ee>5 GeV, along with other fiducial criteria, are selected. The measured BW fiducial production cross section,σfid(γγ → e+e) = 263.5±1.8(stat)±17.8(syst)μb, as well as the differential distributions for various kinematic observables, are in agreement with leading-order quantum electrodynamics predictions complemented with final-state photon radiation. The measured differential BW cross sections allow discrimination between different theoretical descriptions of the photon flux of the lead ion. In the LbL final state, 26 exclusive diphoton candidate events are observed compared with 12.0 ± 2.9 expected for the background. Combined with previous results, the observed significance of the LbL signal with respect to the background-only hypothesis is above five standard deviations. The measured fiducial LbL scattering cross section,σfid(γγ→γγ) = 107 ± 24(stat) ± 13(syst) nb, is in agreement with next- to-leading-order predictions. Limits on the production of axion-like particles coupled to photons are set over the mass range 5–100 GeV, including the most stringent limits to date in the range of 5–10 GeV. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  5. Free, publicly-accessible full text available July 1, 2026
  6. Free, publicly-accessible full text available June 1, 2026
  7. A measurement of the Higgs boson mass and width via its decay to two Z bosons is presented. Proton-proton collision data collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb 1 at a center-of-mass energy of 13 TeV, is used. The invariant mass distribution of four leptons in the on-shell Higgs boson decay is used to measure its mass and constrain its width. This yields the most precise single measurement of the Higgs boson mass to date, 125.04 ± 0.12 GeV , and an upper limit on the width Γ H < 330 MeV at 95% confidence level. A combination of the on- and off-shell Higgs boson production decaying to four leptons is used to determine the Higgs boson width, assuming that no new virtual particles affect the production, a premise that is tested by adding new heavy particles in the gluon fusion loop model. This result is combined with a previous CMS analysis of the off-shell Higgs boson production with decay to two leptons and two neutrinos, giving a measured Higgs boson width of 3.0 1.5 + 2.0 MeV , in agreement with the standard model prediction of 4.1 MeV. The strength of the off-shell Higgs boson production is also reported. The scenario of no off-shell Higgs boson production is excluded at a confidence level corresponding to 3.8 standard deviations. © 2025 CERN, for the CMS Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  8. A<sc>bstract</sc> Measurements of fiducial and total inclusive cross sections for W and Z boson production are presented in proton-proton collisions at$$ \sqrt{s} $$ s = 5.02 and 13 TeV. Electron and muon decay modes (ℓ= e orμ) are studied in the data collected with the CMS detector in 2017, in dedicated runs with reduced instantaneous luminosity. The data sets correspond to integrated luminosities of 298 ± 6 pb−1at 5.02 TeV and 206 ± 5 pb−1at 13 TeV. Measured values of the products of the total inclusive cross sections and the branching fractions at 5.02 TeV areσ(pp→W + X)$$ \mathcal{B} $$ B (W→ ℓν) = 7300±10 (stat)±60 (syst)±140 (lumi) pb, andσ(pp→Z+X)$$ \mathcal{B} $$ B (Z→ ℓ+) = 669±2 (stat)±6 (syst)±13 (lumi) pb for the dilepton invariant mass in the range of 60–120 GeV. The corresponding results at 13 TeV are 20480±10 (stat)±170 (syst)±470 (lumi) pb and 1952±4 (stat)±18 (syst)±45 (lumi) pb. The measured values agree with cross section calculations at next-to-next-to-leading-order in perturbative quantum chromodynamics. Fiducial and total inclusive cross sections, ratios of cross sections of W+and Wproduction as well as inclusive W and Z boson production, and ratios of these measurements at 5.02 and 13 TeV are reported. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  9. An analysis is presented based on models of the intrinsic transverse momentum (intrinsic k T ) of partons in nucleons by studying the dilepton transverse momentum in Drell-Yan events. Using parameter tuning in event generators and existing data from fixed-target experiments and from hadron colliders, our investigation spans 3 orders of magnitude in center-of-mass energy and 2 orders of magnitude in dilepton invariant mass. The results show an energy-scaling behavior of the intrinsic k T parameters, independent of the dilepton invariant mass at a given center-of-mass energy. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  10. A<sc>bstract</sc> A measurement of the top quark pair ($$ \textrm{t}\overline{\textrm{t}} $$ t t ¯ ) production cross section in proton-proton collisions at a centre-of-mass energy of 5.02 TeV is presented. The data were collected at the LHC in autumn 2017, in dedicated runs with low-energy and low-intensity conditions with respect to the default configuration, and correspond to an integrated luminosity of 302 pb−1. The measurement is performed using events with one electron or muon, and multiple jets, at least one of them being identified as originating from a b quark (b tagged). Events are classified based on the number of all reconstructed jets and of b-tagged jets. Multivariate analysis techniques are used to enhance the separation between the signal and backgrounds. The measured cross section is$$ 62.5\pm 1.6{\left(\textrm{stat}\right)}_{-2.5}^{+2.6}\left(\textrm{syst}\right)\pm 1.2\left(\textrm{lumi}\right) $$ 62.5 ± 1.6 stat 2.5 + 2.6 syst ± 1.2 lumi pb. A combination with the result in the dilepton channel based on the same data set yields a value of 62.3 ± 1.5 (stat) ± 2.4 (syst) ± 1.2 (lumi) pb, to be compared with the standard model prediction of$$ {69.5}_{-3.7}^{+3.5} $$ 69.5 3.7 + 3.5 pb at next-to-next-to-leading order in perturbative quantum chromodynamics. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026